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Discrete Cerenkov power spectrum
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A field-theoretical derivation is given for the Cerenkov radiation off a charged particle moving in an
isotropic permeable medium trapped in a hollow cylinder with a perfectly conducting neutral surface.
An exact expression is derived for the power spectrum and the explicit allowed discrete frequencies are
obtained. A Cerenkov counter and the observation of the resulting spectrum would not only provide in-
formation on the presence of a charged particle, in the conventional sense, but would also indicate the
presence of an enveloping surface to the medium and provide information on the “geometry” of the sur-

face.

PACS number(s): 41.60.Bq, 12.20.Ds, 11.10.—z, 03.50.—z

I. INTRODUCTION

. Much theoretical work has been done on the classic
Cerenkov radiation [1] off a charged particle (see, e.g.,
Refs. [2—5]) in a medium. This radiation is emitted by
the charged particle when moving in the medium with a
spread greater than that of the speed of light in the medi-
um. In this paper, we give a field-theoretical derivation
of the Cerenkov radiation off a charged particle moving
in an isotropic permeable medium trapped in a hollow
(infinite) cylinder with a perfectly conducting neutral sur-
face. We obtain an exact expression for the power spec-
trum and the explicit allowed discrete radiation frequen-
cies. For simplicity, the charged particle is made to move
along the axis of the cylinder and, as in the classic com-
putations, any recoil of the particle is neglected. In Sec.
I1, the explicit boundary conditions on the causal Green’s
function are studied and the explicit expression for the
Green’s function is derived in the absence of the filling
medium. Section IH deals with the so-called vacuum-to-
vacuum transition amplitude (see, e.g., Refs. [3,5-7]) of
field theory of the problem in the presence of the medi-
um, the conducting cylinder, and the charged particle.
The explicit expression for the power spectrum is derived
(Sec. III). The motivation of the work is that to go
beyond the classic spectrum with a so-called Cerenkov
counter, and the observation of the resulting spectrum of
the problem, would not only indicate the presence of a
charged particle, in the conventional sense, but would
also indicate the presence of an enveloping surface to the
medium and provide some information on its
“geometry.” Throughout, the index of refraction is as-
sumed to be independent of the radiation frequency, i.e.,
the dispersion is ignored. The generalization of the re-
sults to include indices of refraction that are frequency
dependent is beyond the scope of the present paper and
will be dealt with elsewhere. Section IV deals with our
main conclusions and additional comments.

II. GREEN’S FUNCTION
AND BOUNDARY CONDITIONS

Maxwell’s equations in an isotropic permeable medium
(in rationalized cgs units) may be written as (see, e.g.,
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We first consider the case of a vacuum, i.e., for
which p=1, e=1. Throughout we work in the radiation
gauge A°=0. The Green’s function D¥(x,x’)
=(04[[A47(x)A%(x")]+10_)¢/€0,]0_), in this case
satisfies the well-known differential equation (see, e.g.,
Refs. [8,5])

(—087+989/)D*(x,x")=8%8*x,x") , @)
where i,j =1,2,3, x =(x%x7), and x=(r cosb,r sin6,z).
In particular, the electric-field components are then given
by

(E(x)) = [ (ax")Dx,x") 5 (5)
Since

V-E=p, (6)
we have

3% [ (dx")DU(x,x")Ji(x")=J"x) . (7)

From the current conservation

3,J"=0 (8)
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we may then infer that D¥(x,x')= b Cudy (yEr), T, (yEa)=0, (13)
L i=1
FD(x,x")=—5=8%x,x") . ©) ‘
9”) where C;; depends also on 7',0,0',z,z'. To solve (I'1) we
Hence (4) may be rewritten as make the following expansions:
1 hd iN(6—0'
L 8(9_91):_ 2 etN(G o) (14)
. .. 3/ >
—0ODY(x,x")= 8'1—% 8*(x,x") . (10) 2m 22,
drr) _ 2 & JLlyir(yir)
==3 T s (15)
The support of the current J* is well confined within r a® =1 [Jp4ilyia))
the cylinder far away from its surface. In particular, the ! » dg pigtz—2)
charged particle, described by J*, is restricted to move 8(z —z")= f — 277' ’ (16)
along the axis of the cylinder (the z axis) and hence
J!'=0, J?=0. Only the D*(x,x') is relevant to the 8(x0—x"0)= [~ 4Q° —igi0-x0) 17)
analysis dealing with the vacuum-to-vacuum transition —o 27
amplitude (see Sec. III). From (10) the latter satisfies the where
differential equation ,
@ 80x,x) =20 ) 50— 0)8(z —2)8(x0—x") . (18)
—ODP(x,x")= |1— 5 |8%x,x") . 1y r
(@ Also in cylindrical coordinates
To solve (11) we need the boundary condition (BC) to be 0= 9 L1091 R M (19)
imposed on D*(x,x’). This may be extracted from (5). r2  ror r236* 93z oax%’

Since (E3(x))=0 at r =a, where a is the radius of the

cylinder, the BC to be imposed in (11) is and we have for the Bessel differential equation

, _ 2 2
D¥x,x")],=,=0 . (12) b =L gt 0o
r
We may expand D*}(x,x’) in terms of Bessel functions
J1(yEr) of arbitrary integer order L: Hence from (11) the solution for D¥(x,x") is

© . , o o _ 0 2
D33xx f_wg_:elq(z—z)fkwdzi e IQO(XO x )[1__QqTZ

0 i | © J( N")J( r')
w1 > e:N(@—e)i s NY’OZ NV , 80+ . (1
2T N Sy +g*— Q2 —i8]1[Jy 1 (yNa)?
Jn(yNa)=0, where for a given N, the integer L in (15) was chosen to be equal to N.

Since the charged particle moves along the z axis, that is, we have to consider r =0,r'=0 (see Sec. III), and only

Jo(0)70 [J(0)=1] for the Bessel functions in (21), only the N =0 term will contribute in the sum in (21) for r =0,
r’'=0,i.e.,

o d (z o d _ _ 0
D3(x,x")] l = =0,r'=0 fﬁwzi Z)f_w 2?, QP
2 oo
q 1 1
1— : , 80+ (22)
Q% | ma® £\ [y} +¢*—Q%—i8][J,(y;a)]?
where now
Joly;a)=0 (23)

defines the zeros of the Bessel function J, of zeroth order.

III. POWER SPECTRUM

The vacuum-to-vacuum transition amplitude (see, e.g., Refs. [3,5-7]) is written down from the elementary dimension-
al scaling defined in (3) to be simply



48 DISCRETE CERENKOV POWER SPECTRUM 545

(0,0 )=exp | —— J (dx)(dx")7 *x)D¥X,X")T *(x") (24)
By using the conservation law 6#7 £=0in (3), the latter may be rewritten as

(0,]0_)=exp 2fi f(dx)(dx N33 (x")— zp(x)p(x')]D(X,X')] (25)
where, in particular (n =V pue),

L =y - L -:_z%ge_i(go/nmw)é R RS, TR

5—0+ . (26)
The charged particle will be described in (J!=0, J2=0)

S(r)

J3(x)=evF(z —vt)——8(8) , (27)

8(r)

p(x)=eF(z —vt)——58(0) , (28)

where v is its speed, and the explicit form of the function F(z —vt) will be specified later. The vacuum-to-vacuum tran-
sition amplitude may be then rewritten as

<O+|Oo>=eiW, (29)
= ne’v’ 1 fdz dz'dt dt'F(z —vt)F(z'—uvt')
2mfica’e B*n?
© dQ° o —i(cQ 1
X i(cQ%/n)t—1") _ﬁ_ ig(z—2') s
S5 —w2m’ E [v3+q2—Q%—i8][J,(y,a)
6—+0 (30)
where f=v /c.
The average number of photons emitted by the charged particle is then [5,7,9-11]
2,2 o o F( s lo) 2
(N)= ne v2 1— 212 dq |F(q,0")] 31)
whca“e B'n — 2T 21 20/ 2+ g [T, (y,a) ]

and hence we must have Bn > 1, where Q;'= +(y?+q2)“ 2, Equation (31) may be rewritten more conveniently as

ne?v? - cQ? l
N)= 1— dt 0ld 8 | — ——
N 27rfica’e l 1,_1 f f n

_ F(z—uvt)F*(g,Q00)
f ze"’z i 9 +c.c. |, (32)

- 2“ 2V eI, (r,0) )

where

F(q,Q°)=fw dsz dt et7e ~1(Q% /M (7 —yp) | (33)
P= /T o

The power spectrum may be then easily read from (32), in the spirit of Refs. [3,5,7], by making use of the fact that the
energy of a photon is #iw, to be

0
4%
wd 2

w—

n

1 0
Bn ];—1 2V V242U, (y,2))?

[e—fw'f_w dz e"°F (z —vt)F*(q, Q) +c.c. | . (33)
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The function F(z —uvt) is given simply to be 8(z —vt) and

hence

F(q,QO)=f_°° dzf_m dt eize —tic/mQig(5 1)

cOP°
=27 |vg — —=— (36)
n
and
2ne®v? 1
P(w)= 1
( ca’e [ p*n?
- iq_a)ﬁ(w—i-Q,»o)
X T s —ow) 37
i§1 —w 27 2Q0[J,(y;0)] 7
or
e 1
Plw)= 1—
@ 2ma’e Bn?
, 1172
C 2 [4)
. & 0)—; 7/,-+F ] -
X . 38
igl [Jl(Yia)]z
Because of the 6 function we must have
2 1 _C2
® 1_32;12 —71—27/%>0, (39)

and hence P (w) is nonzero only for fn > 1. Upon setting
Ai=ya, (40)
the expression in (38) simplifies finally to
2 » Slo—w;)
P(co)= e v 5 12 ,
2mea i=1 [Jl(}\'z)]

pn>1 (41)

with the discrete frequencies w; given by

R U 42)
' an Bn? ’
where
Jo(A)=0, i=1,2,..., (43)

B=v/c,n=V —GTL, and a is the radius of the cylinder. The
first few zeros A; of J, in (43) are (see, for example, Ref.
[12], p. 409) 2.41,5.52,8.65,11.79,14.93,. . . . For a given
medium (i.e., a given n) a given cylinder radius a, and a
given speed v (v > ¢ /n) the allowed frequencies w; may be
then explicitly calculated from (42).

IV. SUMMARY AND DISCUSSION

For example, for water n =1.33, and for a relative
speed B=0.8, the frequencies (written in dimensionless
form) are given by

A

T

_2.1x10°

;S = (a /m) ’ (44)

where s stands for a second and m stands for a meter, and
the zeros of the zeroth-order Bessel function J,(A;) are
given [12] with sufficient accuracy even for small i:

11 1
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By a filtering process, an experimentalist may measure
the power spectrum in a narrow range about a typical fre-
quency: @ <w<®. For blue light: ws=3.878X10",
which according to (41) would be given by

e , 1
2mea? < [J, (AN

[P(o)do= (46)

and for a sufficiently large, the sum is over all integers i in
the range

Qs 998 <;< @S 1079
2.1><10 Y] 0 = (47)

and the sum in (46) is one over a finite but large number
of terms. Since ws and @s should be of the order 4 X105,
there are about 10° distinct frequencies possible in the
frequency interval for a of the order of 1 m. Since the re-
lation (46) does not take into account the resistive power
loss at the surface of the cylinder, the power loss could be
enormous for visible light (since it is proportional to the
square root of the frequency) and this makes the observa-
tion of emitted power for visible frequencies unobservable
as such. On the other hand, for microwaves of 10° Hz
frequency, Eq. (46) should give a reasonable answer to the
emitted power in the particular microwave frequency in-
terval of the order of 10° Hz for n about 4 and a of the
order of 1 m, where now there should be only a few dis-
tinct frequencies in the interval of 10° Hz. Here, assum-
ing that, because of the smallness of the frequency the
resistive power loss can be neglected.
The power in (41) may be rewritten equivalently as

o 8((0—0)1)
P,(0)=P (0) 3 L 172
i=1 7T7\,i 5 l— 1
—2_-’1(7%) na n2p?
(48)
where
_ v 1
P (0)= 47T626n2w 1— pEY=) ] : 49)

For a, and a, sufficiently large we then have the follow-
ing power-law behavior:

Pal(a))—Pw(co)
P, (0)—P (@) N

%o (50)

a;
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Hence if a, is some reference point value for which
Pao(w) has been measured, the value a; for another ex-
periment, for which Pal(co) has been measured, can be
formally inferred from (50).

. We have obtained an explicit expression for the
Cerenkov power spectrum of radiation emission by a
charged particle in an isotropic permeable medium
trapped within a hollow (infinite) cylinder with a perfect-
ly conducting neutral surface. The charged particle is
made to move along the axis of the cylinder and, as in the
classic computation, any recoil of the charged particle is
neglected. As a result of the boundary conditions on the
electromagnetic fields, the spectrum of radiation is
discrete. As shown above, the allowed frequencies are
easily calculated. The fact that the emission occurs with
certain frequencies only may be experimentally interest-
ing from the observational point of view as a selection
(filtering) process and goes beyond the classic situation
[1]. The observation of such a spectrum would then not
only indicate the presence of a charged particle in the
medium (with the help of a Cerenkov counter) but would
also indirectly signal the presence of an enveloping sur-
face to the medium and provide some information on its
geometry by giving an order of magnitude on its location
provided by the scale parameter a. Throughout disper-

sion was ignored. The generalization to include indices
of refraction that are frequency dependent is beyond the
scope of the present paper and will be dealt with else-
where with no speculation on it here. Unfortunately, the
formal theory of radiation requires the radius of the en-
veloping surface to be large for its validity in the strict
sense and hence puts some limitations on its size and on
such analyses. Any departure from the formal theory
would make the analysis nontractable and is beyond the
scope of the work. Throughout we used the very elegant
quantum viewpoint [3,7] within the vacuum-to-vacuum
transition amplitude context. The latter not only
simplifies the analysis tremendously but also makes the
physics of the problem more transparent as formulated in
terms of photons.
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